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Resumo 

O eletrocardiograma (ECG) é um dos exames mais utilizados na prática clínica para detecção 

de anomalias cardiovasculares. Este trabalho descreve o desenvolvimento de um pipeline para 

anonimização e pré-processamento de uma base com 1,5 milhão de ECGs obtidos da 

Beneficência Portuguesa de São Paulo. O pipeline foi projetado para eliminar informações 

sensíveis de forma automatizada, garantindo privacidade, qualidade e escalabilidade. A 

solução, implementada em Python e executada em ambiente AWS ECS Fargate (ARM64), 

combina processamento assíncrono e paralelo para lidar com operações I/O-bound e CPU-

bound de maneira eficiente. O sistema processou aproximadamente 1,5 milhão de exames com 

zero falhas, atingindo desempenho médio de 5 arquivos por segundo, tempo total de 83 horas 

e custo de US$69 (US$0,000046 por exame). O pipeline realiza a anonimização de campos 

identificáveis e a rasterização das páginas dos exames em alta resolução (450–600 DPI), 

aumentando a qualidade diagnóstica das imagens para posterior uso em modelos de deep 

learning. Em comparação com uma abordagem baseada em AWS Lambda e Step Functions, a 

arquitetura proposta reduziu o custo em cerca de 22% e o tempo de execução em 17%, além 

de garantir maior controle sobre concorrência e reutilização de recursos. A metodologia 

proposta oferece uma solução reprodutível, eficiente e economicamente sustentável para o 

tratamento de dados médicos em larga escala, contribuindo para o avanço de pesquisas em 

inteligência artificial aplicada à saúde. 

 

Introdução 

 

Doenças cardiovasculares representam a principal causa de mortalidade no mundo, sendo 

responsáveis por cerca de um terço dos óbitos globais (World Heart Federation, 2023). No 

Brasil, essas enfermidades figuram entre as principais causas de internação hospitalar, 

evidenciando a necessidade de diagnósticos rápidos e precisos (Linz et al., 2024). Nesse 

contexto, o eletrocardiograma (ECG) representa uma ferramenta essencial para a detecção 

precoce de anomalias cardíacas. O ECG é um exame que registra a atividade elétrica do coração 

ao longo do tempo por meio de eletrodos posicionados na pele — sendo não invasivo, acessível 

e de baixo custo (Lopes et al., 2019). Contudo, o aumento do volume de exames e a escassez 

de especialistas tornam a análise manual lenta e suscetível a erros. Nesse cenário, a inteligência 

artificial (IA) e o aprendizado profundo (deep learning) surgem como soluções promissoras 

para automatizar a interpretação de ECGs e apoiar decisões clínicas (Ribeiro et al., 2020; Chang 

et al., 2021). Diante desse panorama, pesquisas nacionais que unem engenharia de dados e IA 

tornam-se fundamentais para viabilizar diagnósticos automatizados e escaláveis dentro do 

Sistema Único de Saúde (SUS). 

Em parceria entre o Instituto Mauá de Tecnologia (IMT) e a Beneficência Portuguesa 

de São Paulo (BP), foi desenvolvida uma base de dados com mais de 1,5 milhão de exames de 

ECG — uma das maiores já reunidas no Brasil — destinada ao desenvolvimento de modelos 

de deep learning aplicados à saúde. Entretanto, para viabilizar seu uso, é necessário um pipeline 

rigoroso de engenharia de dados que assegure a anonimização de informações sensíveis nas 

imagens e metadados (ex.: nome do paciente, CRM do médico e assinaturas manuscritas), além 

de etapas de pré-processamento de imagem. O pipeline proposto aplica tarjas automáticas em 



áreas sensíveis e técnicas de melhoria da qualidade da imagem, como realce, equalização e 

redução de ruído, preservando a integridade visual necessária para a extração de features (Bera 

et al., 2022; Basu et al., 2023; Dias et al., 2023). O objetivo deste trabalho é apresentar a 

metodologia de anonimização e pré-processamento desenvolvida para viabilizar o uso seguro e 

eficiente dessa base de ECGs em aplicações de IA médica. 

Mais do que uma aplicação direta de IA, este estudo evidencia o papel da engenharia de 

dados na construção de pipelines escaláveis, de baixo custo e adequadas ao contexto clínico. O 

processamento foi otimizado em uma infraestrutura em nuvem (AWS), com uso de paralelismo, 

processamento assíncrono e multithreading para lidar com vários arquivos de forma eficiente. 

Estratégias de compressão e padronização entre 450 e 600 DPIs foram adotadas para preservar 

detalhes clínicos, reduzir custos de armazenamento e manter a qualidade necessária ao 

treinamento de modelos avançados (Dong et al., 2023; Dias et al., 2023). 

 

Material e Métodos 

 

O sistema foi desenvolvido em Python 3.12 e executado em uma única instância AWS ECS 

Fargate, sobre arquitetura ARM64 (família Graviton). Essa instância concentra todo o 

processamento, explorando paralelismo e concorrência dentro da própria máquina. O objetivo 

é garantir alto desempenho sem a necessidade de múltiplas instâncias, reduzindo custo e 

complexidade operacional. O pipeline é responsável por processar lotes de exames 

armazenados no Amazon S3, aplicando anonimização e otimização de imagem antes do reenvio 

dos resultados. A arquitetura segue um modelo híbrido de concorrência assíncrona e 

paralelismo real, permitindo lidar eficientemente com operações de entrada e saída (I/O-bound) 

e tarefas computacionalmente intensivas (CPU-bound) em uma única instância. 

As operações do sistema são estruturadas em quatro etapas: (1) listagem e 

enfileiramento de arquivos, (2) leitura e pré-processamento, (3) anonimização e (4) compressão 

(ZIP) e reenvio. Operações de I/O, como leitura e escrita em S3, utilizam o modelo assíncrono 

do módulo asyncio, que opera sobre o event loop do sistema operacional apoiado em 

mecanismos como epoll no Linux para monitorar diversos fluxos simultaneamente sem 

bloqueio de execução. Essa abordagem reduz o context switching e permite a transferência de 

centenas de arquivos em paralelo com baixo consumo de recursos (Tanenbaum e Bos, 2015; 

Silberschatz et al., 2020). Já as tarefas CPU-bound, como rasterização, anonimização e 

compressão, utilizam ProcessPoolExecutor, que distribui o trabalho entre os núcleos físicos da 

instância, garantindo paralelismo real e aproveitamento integral da capacidade de 

processamento. O sistema mantém um equilíbrio dinâmico entre CPU e memória, evitando 

sobrecarga e garantindo máxima eficiência no throughput de arquivos processados. 

O núcleo da anonimização, realiza a remoção de informações sensíveis combinando 

análise textual e redaction espacial. A primeira página do exame é processada vetorialmente 

com PyMuPDF, detectando rótulos como “Nome”, “CRM” e “Responsável”, e aplicando tarjas 

sobre seus respectivos valores. A segunda página, que contém o traçado eletrocardiográfico, é 

rasterizada em alta resolução (450–600 DPI) e convertida em imagem via Pillow (PIL), na qual 

são aplicadas redactions retangulares em regiões predefinidas. Essa abordagem garante 

anonimização total sem degradação perceptível do sinal, requisito fundamental para posterior 

uso dos dados em modelos de aprendizado profundo. Todas as operações intensivas são 

executadas em paralelo, explorando o máximo de desempenho de cada núcleo da CPU. 

Para a implantação, o sistema foi containerizado com Docker, garantindo portabilidade 

e consistência entre ambientes. O contêiner foi configurado para execução em arquitetura 

ARM64, mesmo sendo desenvolvido em ambiente x86-64. Essa conversão foi realizada 



utilizando o Docker Buildx, ferramenta que permite cross-compilation e emulação via QEMU, 

gerando imagens ARM compatíveis com instâncias Graviton da AWS (Docker Inc., 2024). Esse 

processo assegura que a mesma imagem possa ser construída e testada localmente em máquinas 

x86 e posteriormente executada em ambiente ARM sem necessidade de recompilação. O uso 

de contêineres também simplifica o controle de dependências e garante reprodutibilidade total 

do ambiente de execução. 

A escolha pela arquitetura ARM64 (Graviton) deve-se à sua maior eficiência energética 

e melhor relação custo-benefício quando comparada a arquiteturas x86, especialmente em 

cargas de processamento intensivo. Enquanto instâncias x86 apresentam maior consumo 

energético e custo por vCPU, os processadores Graviton oferecem desempenho equivalente ou 

superior com menor consumo, resultando em redução significativa de custos operacionais e 

melhor aproveitamento por watt. Segundo a AWS, as instâncias Graviton oferecem até 40% de 

melhor preço-performance em comparação às instâncias baseadas em x86 (AWS, 2024). Essa 

vantagem decorre de um design otimizado para múltiplos núcleos e do uso eficiente de 

instruções vetoriais SIMD NEON, amplamente utilizadas por bibliotecas como libjpeg-turbo. 

Essa biblioteca, empregada no Pillow para compressão de imagens, utiliza vetorização NEON 

em processadores ARM, obtendo aceleração de 2 a 6 vezes em relação à implementação padrão 

do libjpeg (libjpeg-turbo, 2024). Essa sinergia entre hardware e software proporciona 

significativa redução no tempo de rasterização e compressão, mantendo alta qualidade visual e 

reduzindo o custo total de processamento 

Ao término do processamento, os arquivos anonimizados são recombinados, 

comprimidos no formato ZIP Deflate (nível 5) e reenviados ao bucket de saída no S3, 

acompanhados de metadados como tamanho original, taxa de compressão e identificador único 

(ULID). A metodologia empregada alia fundamentos de engenharia de dados, sistemas 

operacionais, computação paralela e virtualização de contêineres, resultando em uma esteira 

altamente otimizada, reprodutível e eficiente, capaz de processar milhões de exames com 

anonimização total e preservação da qualidade diagnóstica (Dias et al., 2023; Dong et al., 2023). 

 

Resultados e Discussão 

 

A execução do pipeline de anonimização foi realizada em uma instância AWS ECS Fargate 

com arquitetura ARM64 (Graviton), configurada com 8 vCPUs e 16 GB de memória. O sistema 

processou aproximadamente 1,5 milhão de exames de ECGs armazenados no Amazon S3, 

atingindo uma taxa média de 5 arquivos por segundo, ou cerca de 18.000 exames por hora. O 

tempo total de execução do lote completo foi de aproximadamente 83 horas, com desempenho 

estável e sem ocorrência de falhas durante todo o processamento. A Figura 1 apresenta o fluxo 

completo da aplicação. 

 

 

 

 



                                   
Figura 1 - Fluxo completo entre o Amazon S3 e o módulo Python responsável por ler o PDF, 

anonimizar os dados sensíveis, rasterizar a imagem em alta resolução (490–600 DPI) e 

comprimir o arquivo processado antes de enviá-lo ao bucket de saída. 

 

A arquitetura geral do pipeline é estruturada em três blocos principais: o bucket de 

entrada no Amazon S3, o módulo de processamento em Python executado no ECS Fargate e o 

bucket de saída. Cada arquivo PDF é extraido do armazenamento, processado de forma 

independente e retornado de maneira anonimizada, garantindo um fluxo contínuo entre entrada 

e saída. A arquitetura geral do pipeline é estruturada em três blocos principais: o bucket de 

entrada no Amazon S3, o módulo de processamento em Python executado no ECS Fargate e o 

bucket de saída. 

 

No módulo Python, as etapas executadas incluem leitura do PDF, remoção de 

informações sensíveis, rasterização da página com o traçado do ECG em alta resolução e 

compressão final. Essa organização modular permite que cada etapa seja paralelizada e 

controlada de forma eficiente, o que é refletido nos resultados apresentados na sequência da 

seção.No módulo Python, as etapas executadas incluem leitura do PDF, remoção de 

informações sensíveis, rasterização da página com o traçado do ECG em alta resolução e 

compressão final. Essa organização modular permite que cada etapa seja paralelizada e 

controlada de forma eficiente, o que é refletido nos resultados apresentados na sequência da 

seção. 

 

O pipeline foi configurado para operação de alta concorrência controlada, combinando 

200 workers assíncronos para operações de entrada e saída (I/O-bound) com 16 workers 

paralelos de CPU (CPU-bound). A fila de tarefas (QUEUE_SIZE = 800) garantiu equilíbrio 

entre throughput e uso de memória, evitando bloqueios e saturação da instância. Essa 

arquitetura permitiu que o sistema mantivesse uso contínuo de CPU acima de 90%, 

aproveitando integralmente os recursos da instância ARM64. 

O custo operacional total estimado foi de US$69 para o processamento completo, 

considerando 83 horas de execução e custo médio de US$0,83/hora da instância Fargate. Isso 

representa um custo unitário de US$0,000046 por exame, evidenciando a eficiência econômica 

e computacional do pipeline. A Tabela 1 apresenta as principais métricas obtidas, demonstrando 

a consistência da execução e a viabilidade prática da abordagem proposta para anonimização 

em larga escala. 



 

Tabela 1 – Métricas operacionais do pipeline, incluindo throughput, parâmetros de 

concorrência (I/O e CPU), características dos arquivos processados e custos agregados 

observados durante a execução completa dos 1,5 milhão de exames. 

Durante o processamento, observou-se que o tamanho médio dos arquivos aumentou de 

~300 KB (entrada) para ~3 MB (saída) após o processo de rasterização e melhoria da qualidade 

da imagem. Esse aumento está relacionado à conversão da segunda página dos exames para 

imagens em alta resolução (450–600 DPI) e compressão JPEG com qualidade de 95%, 

necessária para preservar a integridade dos traçados eletrocardiográficos. Embora isso 

represente um aumento de aproximadamente 10x no tamanho final, tal escolha é justificada 

pelo ganho em fidelidade visual, essencial para análises que fazem uso de modelos de 

aprendizado profundo. 

Antes da consolidação da arquitetura atual, foi desenvolvida uma versão baseada em 

AWS Lambda e Step Functions, projetada para processar arquivos em paralelo com até 500 

invocações simultâneas. Cada função Lambda processava em média 6 a 8 PDFs por execução, 

com tempo total de 14 minutos, próximo ao limite máximo permitido (900s). Essa abordagem 

utilizava 10GB de memória por execução e resolução de 300 DPI, com cada função sendo 

responsável por baixar, anonimizar e reenviar o arquivo ao S3. 

Apesar da escalabilidade imediata, essa arquitetura apresentou limitações práticas, 

principalmente em custo e eficiência de CPU. Como cada Lambda reinicializava o ambiente e 

carregava dependências a cada invocação, o overhead de inicialização impactava a performance 

global. Além disso, o custo médio estimado foi de aproximadamente US$850, superior ao custo 



médio de US$660 obtido na versão Fargate, mesmo com maior qualidade e controle de 

processamento. 

A tabela abaixo apresenta o comparativo consolidado entre as duas implementações, 

destacando as diferenças de desempenho, custo e qualidade. 

 

Tabela 2 – Comparação técnica entre as arquiteturas AWS Lambda + Step Functions e AWS 

ECS Fargate (ARM64), incluindo limites de concorrência, eficiência de execução, uso de 

recursos, qualidade da imagem e custo operacional no processamento dos 1,5 milhão de 

exames. 

A análise comparativa mostra que a arquitetura Lambda + Step Functions, embora 

vantajosa pela simplicidade e paralelização automática, apresentou custo mais elevado e menor 

eficiência para cargas CPU-bound. A arquitetura ECS Fargate, por outro lado, consolidou o 

processamento em uma única instância ARM64, permitindo controle direto da concorrência, 

reuso de processos e melhor aproveitamento da memória. O uso contínuo dos recursos, aliado 

à ausência de reinicializações a cada tarefa, resultou em uma redução de custo de 

aproximadamente 22% e aumento de qualidade de imagem, sem comprometer o tempo total de 

processamento. 

A figura 2 apresenta o resultado final da anonimização aplicada ao conjunto de 1,5 

milhão de exames. Na parte de cima, é possível observar a remoção completa dos campos 

identificáveis por redactions vetoriais, enquanto na parte o exame é mostrado após o processo 

de rasterização em alta resolução, mantendo a fidelidade diagnóstica do traçado 

eletrocardiográfico. Os exemplos ilustram que o algoritmo executa de forma consistente todas 

as etapas de anonimização, remoção de textos sensíveis, redactions posicionais e limpeza de 

metadados, preservando a parte essencial do exame, que é o traçado eletrocardiográfico e outras 

informações como a amplitude das ondas e o laudo contido no exame 



                            

            

Figura 2 – Exemplo de saída do pipeline de anonimização. Primeira página do exame após 

remoção completa dos dados sensíveis, incluindo nome, CPF, data de nascimento, RG, 

informações administrativas e identificações de profissionais. Segunda página após 

rasterização em alta resolução (450–600 DPI) e aplicação de redactions por coordenadas, 

preservando integralmente o traçado eletrocardiográfico. 



Esses resultados demonstram que, do ponto de vista científico e operacional, a 

abordagem ECS Fargate é mais adequada para cargas contínuas e datasets médicos em larga 

escala. Ela oferece maior eficiência energética, controle previsível de custos, processamento 

estável e mantém os princípios de reprodutibilidade e padronização, essenciais em pipelines de 

engenharia de dados aplicados à saúde. Além da validação automática realizada para cada 

arquivo, verificando anonimização, rasterização e reconstrução do PDF, conduzimos também 

uma verificação manual por amostragem. Os exames inspecionados aleatoriamente não 

apresentaram falhas de anonimização ou perda de conteúdo clínico, confirmando a 

confiabilidade do processo como um todo. 

 

Conclusões 

A solução desenvolvida demonstrou que é possível anonimizar em larga escala exames de ECG 

de forma automatizada, eficiente e economicamente viável, preservando a integridade visual 

necessária para análises médicas e aprendizado profundo. Por meio de uma arquitetura baseada 

em AWS ECS Fargate (ARM64), o pipeline atingiu desempenho de 5 arquivos por segundo, 

processando 1,5 milhão de exames em aproximadamente 83 horas, sem falhas e com custo total 

de apenas US$69. 

Essa implementação consolidou uma abordagem híbrida de concorrência assíncrona e 

paralelismo real, capaz de equilibrar operações I/O-bound e CPU-bound em uma única 

instância, explorando integralmente os recursos computacionais disponíveis. O uso de 

processos paralelos, fila controlada de tarefas e compressão inteligente viabilizou a execução 

contínua e estável do sistema, reduzindo sobrecarga e garantindo previsibilidade operacional. 

A rasterização em alta resolução (450–600 DPI) elevou o tamanho médio dos arquivos de 300 

KB para 3 MB, mas proporcionou imagens com fidelidade diagnóstica significativamente 

superior, requisito essencial para a etapa posterior de extração de features e treinamento de 

modelos de aprendizado profundo. 

Em contraposição, a arquitetura alternativa, baseada em AWS Lambda e Step Functions, 

mostrou-se funcional, porém limitada. Apesar de alcançar paralelização imediata com até 500 

execuções simultâneas, cada Lambda processava de 6 a 8 arquivos em média, resultando em 

~100 horas totais de execução e custo estimado de US$850. O caráter efêmero das funções e o 

reinício do ambiente a cada invocação geraram sobrecarga de inicialização e desperdício de 

recursos, restringindo a eficiência em tarefas intensivas de CPU. 

Portanto, o método proposto resolve de forma direta o problema inicial, a anonimização 

massiva e eficiente de exames médicos contendo dados sensíveis, garantindo privacidade, 

escalabilidade e integridade dos traçados. Além de superar as limitações de custo e desempenho 

das soluções anteriores, a arquitetura desenvolvida oferece um caminho reprodutível e 

sustentável para o processamento de grandes bases clínicas. Essa integração entre engenharia 

de dados, sistemas distribuídos e ética computacional representa uma contribuição concreta 

para o avanço da ciência de dados aplicada à saúde, fornecendo uma base sólida para o 

treinamento de modelos de inteligência artificial e diagnóstico automatizado de ECGs. 
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