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Resumo. Esse trabalho tem como o objetivo calcular o espaco livre a frente de um veiculo
utilizando cameras e métodos da inteligéncia artificial. Um modelo YOLO (versdo 11)
(KOTTHAPALLI et al., 2025) foi retreinado para a segmentagdo da rua e outro modelo YOLO foi
retreinado para a deteg¢do de pessoas e objetos a frente do veiculo. Apos essa etapa, foi utilizado o
modelo Depth-Pro (BOCHKOWSKI et al., 2024), para utilizar a técnica de destilagdo de modelos
com a finalidade de desenvolver um modelo aluno capaz de ser embarcado em um hardware com
baixa capacidade computacional. Apos a cria¢do do modelo aluno, foi elaborado um algoritmo
para a jun¢do dos dois modelos para a defini¢do dos limites da rua a partir da determinagdo das

distancias desses pontos. O algoritmo foi testado e implementado em um hardware embarcado
NVIDIA JETSON AGX ORIN (NVIDIA, 2023).

Introduciao

Com o avango das tecnologias embarcadas na industria automotiva, os veiculos tém se tornado
progressivamente mais inteligentes e autonomos ao longo dos ultimos anos. Entre os sensores
comumente utilizados para a determina¢do do espaco a frente de veiculos autdbnomos, destacam-se
os sensores LiDAR, amplamente reconhecidos por sua alta precisdo na geracdo de mapas
tridimensionais e pela robustez diante de diferentes condi¢cdes ambientais (YADAV et al., 2023).
Apesar dessas vantagens, o custo elevado dessa tecnologia impacta diretamente o prego final das
plataformas que a utilizam, o que limita sua ado¢do em larga escala. Nesse contexto, torna-se
estratégica a busca por alternativas mais acessiveis e de menor custo.

Paralelamente, técnicas de visdo computacional e inteligéncia artificial t€ém avangado de forma
significativa, especialmente no campo da estimativa de profundidade monocular. Trabalhos recentes
demonstram que redes neurais profundas conseguem estimar profundidade com boa precisao
utilizando apenas cameras convencionais. (XUE et al.,, 2020) por exemplo, apresentaram um
método auto supervisionado hierarquico para estimativa de profundidade absoluta voltado para
aplicagdes em veiculos autonomos. (LI et al., 2023) propuseram uma abordagem baseada em redes
convolucionais com mddulos de atengdo para aprimorar a estimativa de profundidade em ambientes
estruturados. De forma complementar, (AFSHAR et al., 2023) desenvolveram um método eficiente
baseado em YOLO e mecanismos de atencao para estimar, em tempo real, as distancias relativas de
veiculos, demonstrando que sistemas puramente visuais podem competir com sensores dedicados.
Essas investigagdes reforcam que a substituicao parcial ou total de sensores LiDAR por cameras
associadas a modelos de inteligéncia artificial ¢ tecnicamente viavel e economicamente atrativa,
reduzindo significativamente o custo do sistema sem comprometer o desempenho de forma
relevante. Diante desse cendrio, este trabalho propde o desenvolvimento de um método para
determinar o espaco livre a frente de veiculos autdnomos utilizando cameras e técnicas de
inteligéncia artificial para estimativa de distancias e apoio a elaboracdo de trajetorias seguras.

Material e Métodos

O desenvolvimento deste trabalho de iniciag@o cientifica foi dividido em cinco etapas principais:



1. Aquisicio de imagens: coleta de imagens no entorno do campus do Instituto Maud de
tecnologia para a formagao de um dataset;

2. Rotulacdo das imagens: anotagdo manual das imagens obtidas, com o objetivo de treinar
uma rede neural do tipo YOLOvlln para deteccio de objetos relevantes ao cenario
automotivo;

3. Destilagdo do modelo Depth-Pro: utilizagdo do modelo Depth-Pro como rede professor
para a geracdo de mapas de profundidade e posterior treinamento do modelo aluno;

4. Integracdo dos modelos: desenvolvimento de um algoritmo para a combinacdo das
informacdes provenientes do modelo YOLO e do modelo aluno, permitindo a estimativa do
espaco livre a frente do veiculo;

5. Implementacao embarcada: implantagdao do algoritmo final em um hardware embarcado,
visando a validag@o do sistema em condigdes reais de operagao.

Etapa 1 — Aquisi¢cdo de imagens

Para a etapa de aquisi¢ao de imagens, foi utilizado o veiculo de testes ORBI, pertencente ao grupo
de pesquisa SMIR do Instituto Maua de Tecnologia. A camera foi posicionada na regido central
superior da dianteira do veiculo, de forma a reproduzir o campo de visdo de um sistema embarcado
automotivo.

A captura das imagens foi realizada por meio de um programa desenvolvido em Python, utilizando
a biblioteca OpenCV, configurado para registrar uma imagem a cada segundo. O procedimento foi
conduzido no campus de Sdo Caetano do Sul, abrangendo diferentes trajetos e condigdes de
iluminacdo e clima. O objetivo dessa etapa foi compor um dataset diversificado, capaz de
representar situagoes reais de trafego e auxiliar no treinamento das redes neurais subsequentes.

Figura 1 — Imagens com diferentes condi¢des de iluminacao.

A Figura 1(a) foi retirada durante um dia nublado, € possivel observar que possui uma iluminacao
mais uniforme, ja a em (b) foi aquisitada durante um dia com bastante iluminagao solar, resultando
em sombra sobre os objetos e na rua, dificultando assim o aprendizado do modelo. Por fim, em (c)
foi adquirida durante a noite, resultando uma diferente luminosidade da rua e dos objetos a frente do
veiculo.

Etapa 2 — Rotulacio e treinamento do modelo tipo YOLO.

Ap0s a aquisi¢cdo das imagens em diferentes condi¢des de iluminag¢do no campus do Instituto Maua
de Tecnologia, iniciou-se a etapa de pré-processamento e rotulacdo. Primeiramente, todas as
imagens foram redimensionadas para a resolugcdao de 640x640 pixels, a fim de atender ao formato de
entrada exigido pelos modelos do tipo YOLO durante o treinamento.

Para a rotulagdo, foi utilizada a plataforma Roboflow (DWYER et al., 2025), uma ferramenta Web
que permite realizar anotagdes manuais e gerar automaticamente os arquivos de rotulos compativeis
com o formato YOLO. Na primeira fase da rotulacdo, foram identificados objetos como carros,



faixas de pedestre e lombadas, enquanto na segunda fase foi realizada a segmentacdo das areas
correspondentes a rua.

Adicionalmente, foram incorporadas imagens obtidas a partir da Roboflow Universe, contendo
exemplos previamente segmentados de vias urbanas, com o objetivo de aumentar a diversidade do
conjunto de dados. Ao final do processo, o dataset total utilizado contou com aproximadamente
8.000 imagens, que foram divididas em 80% para treinamento de 20% para validagdo, abrangendo
uma ampla variedade de cendrios e condigdes ambientais.

Figura 2 — Exemplo de rotulagdo de imagem utilizando RoboFlow.

(a) (b)

Na Figura 2, ¢ possivel observar que, na rotula¢do (a), foram identificados apenas os objetos a
frente do veiculo, enquanto na rotulagdo (b), foi segmentada apenas a rua. Dessa forma, foi possivel
treinar dois modelos do tipo YOLO: um voltado para a deteccio de objetos e outro para a
segmentacao da via.

Apds a etapa de rotulacdo, utilizando Python e a biblioteca Ultralytics, foram realizados os
treinamentos dos dois modelos. Em ambos os casos, foram empregadas aproximadamente 500
épocas e uma taxa de aprendizado (learning rate) de 0.0001, visando alcancar uma boa
convergéncia e desempenho nos resultados.

Etapa 3 — Destilacio do modelo Depht-Pro.

Com os modelos da YOLO ja treinados, a etapa seguinte consistiu na destilacio do modelo Depth-
Pro que apresenta aproximadamente 500 milhdes de pardmetros. Devido a sua alta complexidade,
esse tipo de modelo demanda um elevado poder computacional para operar em tempo real, algo
invidvel na maioria dos sistemas embarcados. Como alternativa, foi aplicada a técnica de destilagao
de modelos (model distillation), que visa transferir o conhecimento de um modelo complexo para
outro modelo mais leve, com menor nimero de pardmetros e maior eficiéncia computacional.

Nesse processo, o0 modelo original ¢ denominado modelo professor, responsavel por gerar os dados
de treinamento utilizados pelo modelo aluno, cuja arquitetura é projetada especificamente para
execucdo embarcada. Para a geracdo desses dados, foram reutilizadas as mesmas imagens
empregadas no treinamento da YOLO, porém sem as anotagdes de rotulagdo. As saidas do modelo
professor foram salvas em arquivos do tipo NumPy (.npy), juntamente com suas respectivas
imagens, formando o novo dataset supervisionado.

O modelo aluno foi implementado em Tensorflow utilizando uma rede neural convolucional (CNN)
com arquitetura do tipo ResU-Net (LI et al., 2022), que combina blocos residuais e mecanismos de



atencdo. Essa configuracdo melhora o desempenho em relagdo as arquiteturas Encoder—Decoder
tradicionais, permitindo uma extragdo de caracteristicas mais eficiente, mesmo com conjuntos de
dados reduzidos. Além disso, para aumentar a robustez e reduzir o overfitting, foram aplicadas
técnicas de data augmentation, que consistem em modificar artificialmente as imagens de
treinamento, como alterar contraste, brilho e iluminacdo, de modo a simular diferentes condigdes
visuais e ampliar a diversidade dos dados.

O modelo aluno foi treinado utilizando um dataset composto por aproximadamente 7.000 imagens,
mantendo-se o padrdo de resolugdo adotado no treinamento da YOLO (640 x 640 pixels) para
garantir uniformidade no processamento ¢ na aquisicdo das imagens. O conjunto de dados foi
dividido em 80% para treinamento e 20% para valida¢do, permitindo uma avaliacdo equilibrada do
desempenho do modelo. Durante o processo de treinamento, foram utilizados 1.000 épocas € uma
taxa de aprendizado (learning rate) de 0,0001; esses parametros foram definidos com o objetivo de
otimizar a convergéncia € minimizar o erro de generalizagao.

Além disso, para o treinamento, foi implementada uma funcdo de custo customizada, desenvolvida
com o objetivo de combinar a precisdo na estimativa de profundidade com a coeréncia estatistica
das distribui¢des de profundidade preditas. Essa fun¢do de perda integra dois componentes
principais: o Mean Squared Error (MEAN SQUARED ERROR, 2025), que mede o erro médio
quadratico entre o mapa de profundidade real e o predito, ¢ a divergéncia de Kullback—Leibler (KL
DIVERGENCE, 2025), que compara as distribuicdes de probabilidade das profundidades entre o
valor real e o estimado.

Para o calculo dessas distribui¢des, cada imagem ¢ convertida em um histograma suavizado de
profundidades, normalizado por meio de uma técnica de “soft histogram” com kernel gaussiano.
Dessa forma, o modelo nao apenas aprende a prever os valores absolutos de profundidade, mas
também a preservar a distribui¢do relativa das distancias em cada cena, o que contribui para uma
representacdo mais consistente e estavel do espago tridimensional. A func¢do de custo final ¢
expressa como uma combinagdo ponderada dessas duas métricas, definida por:

Equacdo 1 — Funcao de custo.
L = a- MSE (}h'ue-ypred) + B ’ DKL (P(ytrue) Il P(}’pred))

onde @ ¢ B sdo hiperpardmetros que controlam a contribuicio de cada termo. Essa formulagio
permite equilibrar o aprendizado entre precisdo numérica e coeréncia estrutural, resultando em um
modelo aluno mais robusto e adaptado as restri¢des de hardware embarcado.

Etapa 4 — Integracio das redes neurais.

Ap0s a etapa de destilagao de modelos, foi utilizada a mascara de segmentagdo da rua gerada pelo
modelo YOLO para a extragdo dos contornos da via. Inicialmente, os pontos pertencentes a borda
da segmentacdo foram filtrados, de modo que apenas os pixels de limite da regido segmentada
fossem mantidos. Entretanto, observou-se que, para um mesmo valor de coordenada X, havia
multiplos valores de Y, o que representava diferentes pontos verticais sobre uma mesma coluna da
imagem. Para contornar esse problema, aplicou-se uma filtragem adicional, selecionando apenas o
ponto correspondente ao maior valor de Y para cada X, garantindo assim que apenas o contorno
inferior da segmentacao fosse preservado, representando de forma consistente o limite visivel da
rua.

Em seguida, a mesma imagem foi processada pelo modelo aluno, desenvolvido a partir da
destilacdo de modelos, para gerar o mapa de profundidade correspondente. A partir desse mapa, foi
possivel associar a cada ponto filtrado da saida da YOLO sua respectiva distancia em relagdo ao
veiculo, obtendo assim uma estimativa da distancia dos obstaculos pixel a pixel presentes a frente
do veiculo autonomo.



Etapa 5 — Implementacio no hardware embarcado.

Apo6s o desenvolvimento do algoritmo de determinacao do espago livre a frente do veiculo, tornou-
se necessario selecionar um hardware capaz de executar o sistema de forma eficiente. Apds uma
analise das opg¢des disponiveis no mercado, optou-se pela NVIDIA JETSON AGX ORIN (32 GB),
devido ao seu elevado poder computacional aliado a dimensdes fisicas compactas e baixo consumo
energético (cerca de 40 W em operacao sem limitagao de poténcia). Essas caracteristicas tornam a
plataforma especialmente adequada para aplicacdes embarcadas em veiculos autobnomos, nas quais
ha restri¢cdes de espago e eficiéncia energética € um fator critico.

Figura 3 — Especificagdes NVIDIA JETSON AGX ORIN.
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Na figura 3, € possivel obrservar que a NIVIDA JETSON AGX ORIN conta com uma capacidade
computacional de até 200 TOPS (Tera Operations Per Second), ou seja, é capaz de realizar até 200
trilhdes de operacdes por segundo. Esse desempenho € especialmente importante em aplicagdes que
envolvem redes neurais convolucionais (CNNs), pois tais modelos demandam uma grande
quantidade de operacdes matriciais e convolugdes em tempo real.

Ap6s a definicdo do hardware, foi necessario realizar a conversdo do modelo aluno para formatos
mais adequados ao ambiente embarcado, garantindo o maximo desempenho possivel. Inicialmente,
o modelo foi convertido do formato TensorFlow para o formato ONNX (Open Neural Network
Exchange), um padrao aberto que facilita a interoperabilidade entre diferentes frameworks de redes
neurais. Essa conversdo permite maior flexibilidade e compatibilidade com outras ferramentas de
otimizagao.

Em seguida, o modelo ONNX foi convertido para o formato TensorRT, que ¢ uma biblioteca de
otimiza¢do desenvolvida pela NVIDIA para inferéncia de redes neurais em GPUs. O TensorRT
realiza otimiza¢des como fusdo de camadas, quantizagdo de pesos e execugdo em precisdo mista
(FP16/INT8), resultando em uma reducdo significativa no tempo de inferéncia e melhor
aproveitamento da GPU da Jetson Orin. Dessa forma, o sistema pode operar de forma mais eficiente
e com desempenho em tempo real, fundamental para aplicacdes embarcadas em veiculos
autdonomos.



Com a otimizagao e implanta¢ao no hardware embarcado, o sistema proposto atingiu o desempenho
necessario para operagdo em tempo real, consolidando a viabilidade da solu¢dao desenvolvida para
aplicacdo em veiculos autonomos.

Resultados e Discussao
Ap0s o treinamento do modelo YOLO e do modelo aluno, bem como a execucdo do algoritmo de

unido entre ambos e a realizagdo dos testes experimentais correspondentes, foram obtidos os
resultados apresentados a seguir, os quais permitem avaliar o desempenho e a eficiéncia do sistema.

Figura 4 — Segmentagdo da Rua.

Na Figura 4, ¢ possivel observar o resultado do treinamento do modelo YOLO para a segmentacao
de rua. Em média, o modelo apresentou uma exatidao de 95%, com um tempo médio de execucao
de 0,05 segundos por imagem no modo FP16, o que demonstra sua viabilidade para aplicagdes em
tempo real.

J& na Figura 5, sdo apresentados os resultados comparativos entre o modelo aluno (ResU-Net) e o
modelo professor (Depth-Pro). As imagens da primeira linha correspondem aos exemplos originais,
as da segunda linha representam os mapas de profundidade gerados pelo modelo professor e, por
fim, as da terceira linha mostram os resultados produzidos pelo modelo aluno.

Ap6s o processo de destilagcdo, o modelo aluno desenvolvido passou a conter aproximadamente 35
milhdes de parametros, em contraste com os cerca de 500 milhdes de parametros do modelo
original (Depth-Pro). Essa reducdo de aproximadamente 93% na quantidade total de parametros
resultou em uma diminuicao significativa do custo computacional, permitindo sua execucao em
hardware embarcado com maior eficiéncia, além de reduzir o tempo de inferéncia de
aproximadamente 180 segundos para cerca de 100 ms.



Figura 5 - Comparagao de saidas do modelo aluno e Depth-Pro.

Na Figura 6, ¢ possivel comparar as distancias estimadas pelos modelos aluno e professor (Depth-
Pro). As distancias foram obtidas ao longo de algumas linhas horizontais da imagem, permitindo
uma analise detalhada da correspondéncia entre as previsdes. Observa-se que os valores produzidos
pelo modelo aluno estao bastante proximos aos obtidos pelo modelo Depth-Pro, evidenciando uma
boa transferéncia de conhecimento durante o processo de destilagdo. A principal diferencga
identificada ¢ a presenga de um ruido ligeiramente maior nas previsdes do modelo aluno, o que ¢

esperado em fung¢do de sua menor complexidade e nimero de parametros.

Figura 6 — Comparagao das distancias entre modelo aluno e Deph-Pro.
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Na Figura 7, € possivel observar as etapas realizadas para a estimativa das distancias. Inicialmente,
sdo identificadas as bordas da segmentacdo da rua. Em seguida, realiza-se um processo de
filtragem, mantendo apenas os pontos com coordenadas X associadas aos maiores valores de Y,
correspondentes a borda inferior da regido segmentada. Por fim, esses pontos sdo fornecidos ao




modelo aluno, que retorna os valores estimados de distdncia para cada um deles. Dessa forma, ¢
possivel determinar a variagao das distancias dos objetos ao longo da imagem.

Figura 7 — Algoritmo de determinagdo das distancias.
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Figura 8 — Prototipo de algoritmo de planejamento de trajetoria.
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Na Figura 8, ¢ apresentado um protdtipo de algoritmo de trajetéria desenvolvido para estimar o
angulo de direcdo do volante de um veiculo autdnomo, com base na segmentacdo da rua e nas
distancias estimadas pelo modelo aluno.

O algoritmo inicia tracando uma reta que parte do centro da imagem representando o centro do
veiculo até o ponto de maior distancia calculada pelo modelo aluno. Antes disso, os pontos de saida
do modelo sdo filtrados para remocao de outliers, garantindo maior estabilidade nas estimativas.

Em seguida, os pontos dessa reta sdo comparados com os pontos das distancias do lado esquerdo e
direito. Caso a distancia entre eles seja menor que o limite definido pelo algoritmo, os pontos sdao
ajustados lateralmente para o lado que apresentar maior distancia. Se ambos os lados estiverem
abaixo do limite, o ponto ¢ reposicionado na média das duas distancias.

ApOs o ajuste, € aplicada uma curva spline para suavizar o caminho gerado, resultando em uma
trajetoria continua e realista. Dessa forma, o algoritmo ¢é capaz de prever a trajetéria do veiculo por



aproximadamente 20 metros a frente, fornecendo uma base robusta para o controle direcional
autonomo.

Conclusoes

Esse trabalho de iniciagdo cientifica apresentou o desenvolvimento de um sistema embarcado para a
determinacdo do espacgo livre a frente de um veiculo autonomo, utilizando técnicas de visao
computacional e inteligéncia artificial como alternativa de menor custo em relagdo a sensores
tradicionais, como o LiDAR. Por meio da combinagdao de um modelo de segmentagdo baseado no
YOLO e de um modelo de estimativa de profundidade derivado da destilagdo do Depth-Pro, foi
possivel integrar a percep¢ao do ambiente em um sistema unificado capaz de operar em tempo real.

Os resultados obtidos demonstram a eficiéncia do processo de destilagdo de modelos na
transferéncia de conhecimento entre arquiteturas de diferentes complexidades. O modelo aluno,
com aproximadamente 35 milhdes de pardmetros, apresentou um desempenho computacional
significativamente superior, reduzindo o tempo médio de inferéncia de 170 segundos por imagem
(modelo Depth-Pro) para 100 milissegundos por imagem (modelo aluno em INTS8), sem perdas
expressivas de precisdo. Essa otimizagdo possibilitou a execu¢do do modelo em hardware
embarcado, como a NVIDIA Jetson AGX Orin, de forma estavel ¢ com consumo energético
reduzido.

Além disso, o algoritmo de trajetoria desenvolvido representa um protétipo inicial voltado a
previsdo do caminho do veiculo com base na segmentagdo da via e nas distancias estimadas pelo
modelo aluno. Embora os resultados obtidos tenham sido satisfatérios, demonstrando a capacidade
de prever trajetdrias de até 20 metros a frente, o algoritmo ainda apresenta grande potencial de
evolu¢do. Melhorias futuras podem incluir o refinamento dos critérios de decisdo lateral, a
integracdo de multiplos sensores e a aplicacdo de técnicas mais avancadas de planejamento e
controle de trajetoria.

Dessa forma, o sistema proposto se mostra uma solugdo promissora para aplicagdes em veiculos
autobnomos, conciliando baixo custo, eficiéncia computacional e precisdo adequada, abrindo
caminho para o desenvolvimento de sistemas de navegacao autdnoma mais acessiveis e escaldveis.
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