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Resumo. Esse trabalho tem como o objetivo calcular o espaço livre a frente de um veículo 

utilizando câmeras e métodos da inteligência artificial. Um modelo YOLO (versão 11) 

(KOTTHAPALLI et al., 2025) foi retreinado para a segmentação da rua e outro modelo YOLO foi 

retreinado para a deteção de pessoas e objetos a frente do veículo. Após essa etapa, foi utilizado o 

modelo Depth-Pro (BOCHKOWSKI et al., 2024), para utilizar a técnica de destilação de modelos 

com a finalidade de desenvolver um modelo aluno capaz de ser embarcado em um hardware com 

baixa capacidade computacional. Após a criação do modelo aluno, foi elaborado um algoritmo 

para a junção dos dois modelos para a definição dos limites da rua a partir da determinação das 

distancias desses pontos. O algoritmo foi testado e implementado em um hardware embarcado 

NVIDIA JETSON AGX ORIN (NVIDIA, 2023). 

 

Introdução 

 

Com o avanço das tecnologias embarcadas na indústria automotiva, os veículos têm se tornado 

progressivamente mais inteligentes e autônomos ao longo dos últimos anos. Entre os sensores 

comumente utilizados para a determinação do espaço à frente de veículos autônomos, destacam-se 

os sensores LiDAR, amplamente reconhecidos por sua alta precisão na geração de mapas 

tridimensionais e pela robustez diante de diferentes condições ambientais (YADAV et al., 2023). 

Apesar dessas vantagens, o custo elevado dessa tecnologia impacta diretamente o preço final das 

plataformas que a utilizam, o que limita sua adoção em larga escala. Nesse contexto, torna-se 

estratégica a busca por alternativas mais acessíveis e de menor custo. 

Paralelamente, técnicas de visão computacional e inteligência artificial têm avançado de forma 

significativa, especialmente no campo da estimativa de profundidade monocular. Trabalhos recentes 

demonstram que redes neurais profundas conseguem estimar profundidade com boa precisão 

utilizando apenas câmeras convencionais. (XUE et al., 2020) por exemplo, apresentaram um 

método auto supervisionado hierárquico para estimativa de profundidade absoluta voltado para 

aplicações em veículos autônomos. (LI et al., 2023) propuseram uma abordagem baseada em redes 

convolucionais com módulos de atenção para aprimorar a estimativa de profundidade em ambientes 

estruturados. De forma complementar, (AFSHAR et al., 2023) desenvolveram um método eficiente 

baseado em YOLO e mecanismos de atenção para estimar, em tempo real, as distâncias relativas de 

veículos, demonstrando que sistemas puramente visuais podem competir com sensores dedicados. 

Essas investigações reforçam que a substituição parcial ou total de sensores LiDAR por câmeras 

associadas a modelos de inteligência artificial é tecnicamente viável e economicamente atrativa, 

reduzindo significativamente o custo do sistema sem comprometer o desempenho de forma 

relevante. Diante desse cenário, este trabalho propõe o desenvolvimento de um método para 

determinar o espaço livre à frente de veículos autônomos utilizando câmeras e técnicas de 

inteligência artificial para estimativa de distâncias e apoio à elaboração de trajetórias seguras. 

 

Material e Métodos 

 

O desenvolvimento deste trabalho de iniciação científica foi dividido em cinco etapas principais: 



1. Aquisição de imagens: coleta de imagens no entorno do campus do Instituto Mauá de 

tecnologia para a formação de um dataset; 

2. Rotulação das imagens: anotação manual das imagens obtidas, com o objetivo de treinar 

uma rede neural do tipo YOLOv11n para detecção de objetos relevantes ao cenário 

automotivo; 

3. Destilação do modelo Depth-Pro: utilização do modelo Depth-Pro como rede professor 

para a geração de mapas de profundidade e posterior treinamento do modelo aluno; 

4. Integração dos modelos: desenvolvimento de um algoritmo para a combinação das 

informações provenientes do modelo YOLO e do modelo aluno, permitindo a estimativa do 

espaço livre à frente do veículo; 

5. Implementação embarcada: implantação do algoritmo final em um hardware embarcado, 

visando a validação do sistema em condições reais de operação. 

 

Etapa 1 – Aquisição de imagens 

 

Para a etapa de aquisição de imagens, foi utilizado o veículo de testes ORBI, pertencente ao grupo 

de pesquisa SMIR do Instituto Mauá de Tecnologia. A câmera foi posicionada na região central 

superior da dianteira do veículo, de forma a reproduzir o campo de visão de um sistema embarcado 

automotivo. 

A captura das imagens foi realizada por meio de um programa desenvolvido em Python, utilizando 

a biblioteca OpenCV, configurado para registrar uma imagem a cada segundo. O procedimento foi 

conduzido no campus de São Caetano do Sul, abrangendo diferentes trajetos e condições de 

iluminação e clima. O objetivo dessa etapa foi compor um dataset diversificado, capaz de 

representar situações reais de tráfego e auxiliar no treinamento das redes neurais subsequentes. 

 

Figura 1 – Imagens com diferentes condições de iluminação. 

 
A Figura 1(a) foi retirada durante um dia nublado, é possível observar que possui uma iluminação 

mais uniforme, já a em (b) foi aquisitada durante um dia com bastante iluminação solar, resultando 

em sombra sobre os objetos e na rua, dificultando assim o aprendizado do modelo. Por fim, em (c) 

foi adquirida durante a noite, resultando uma diferente luminosidade da rua e dos objetos a frente do 

veículo. 

 

Etapa 2 – Rotulação e treinamento do modelo tipo YOLO. 

 

Após a aquisição das imagens em diferentes condições de iluminação no campus do Instituto Mauá 

de Tecnologia, iniciou-se a etapa de pré-processamento e rotulação. Primeiramente, todas as 

imagens foram redimensionadas para a resolução de 640×640 pixels, a fim de atender ao formato de 

entrada exigido pelos modelos do tipo YOLO durante o treinamento. 

Para a rotulação, foi utilizada a plataforma Roboflow (DWYER et al., 2025), uma ferramenta Web 

que permite realizar anotações manuais e gerar automaticamente os arquivos de rótulos compatíveis 

com o formato YOLO. Na primeira fase da rotulação, foram identificados objetos como carros, 



faixas de pedestre e lombadas, enquanto na segunda fase foi realizada a segmentação das áreas 

correspondentes à rua. 

Adicionalmente, foram incorporadas imagens obtidas a partir da Roboflow Universe, contendo 

exemplos previamente segmentados de vias urbanas, com o objetivo de aumentar a diversidade do 

conjunto de dados. Ao final do processo, o dataset total utilizado contou com aproximadamente 

8.000 imagens, que foram divididas em 80% para treinamento de 20% para validação, abrangendo 

uma ampla variedade de cenários e condições ambientais. 

 

Figura 2 – Exemplo de rotulação de imagem utilizando RoboFlow. 

 

 
 

Na Figura 2, é possível observar que, na rotulação (a), foram identificados apenas os objetos à 

frente do veículo, enquanto na rotulação (b), foi segmentada apenas a rua. Dessa forma, foi possível 

treinar dois modelos do tipo YOLO: um voltado para a detecção de objetos e outro para a 

segmentação da via. 

Após a etapa de rotulação, utilizando Python e a biblioteca Ultralytics, foram realizados os 

treinamentos dos dois modelos. Em ambos os casos, foram empregadas aproximadamente 500 

épocas e uma taxa de aprendizado (learning rate) de 0.0001, visando alcançar uma boa 

convergência e desempenho nos resultados. 

 

Etapa 3 – Destilação do modelo Depht-Pro. 

 

Com os modelos da YOLO já treinados, a etapa seguinte consistiu na destilação do modelo Depth-

Pro que apresenta aproximadamente 500 milhões de parâmetros. Devido à sua alta complexidade, 

esse tipo de modelo demanda um elevado poder computacional para operar em tempo real, algo 

inviável na maioria dos sistemas embarcados. Como alternativa, foi aplicada a técnica de destilação 

de modelos (model distillation), que visa transferir o conhecimento de um modelo complexo para 

outro modelo mais leve, com menor número de parâmetros e maior eficiência computacional. 

Nesse processo, o modelo original é denominado modelo professor, responsável por gerar os dados 

de treinamento utilizados pelo modelo aluno, cuja arquitetura é projetada especificamente para 

execução embarcada. Para a geração desses dados, foram reutilizadas as mesmas imagens 

empregadas no treinamento da YOLO, porém sem as anotações de rotulação. As saídas do modelo 

professor foram salvas em arquivos do tipo NumPy (.npy), juntamente com suas respectivas 

imagens, formando o novo dataset supervisionado. 

O modelo aluno foi implementado em Tensorflow utilizando uma rede neural convolucional (CNN) 

com arquitetura do tipo ResU-Net (LI et al., 2022), que combina blocos residuais e mecanismos de 



atenção. Essa configuração melhora o desempenho em relação às arquiteturas Encoder–Decoder 

tradicionais, permitindo uma extração de características mais eficiente, mesmo com conjuntos de 

dados reduzidos. Além disso, para aumentar a robustez e reduzir o overfitting, foram aplicadas 

técnicas de data augmentation, que consistem em modificar artificialmente as imagens de 

treinamento, como alterar contraste, brilho e iluminação, de modo a simular diferentes condições 

visuais e ampliar a diversidade dos dados. 

O modelo aluno foi treinado utilizando um dataset composto por aproximadamente 7.000 imagens, 

mantendo-se o padrão de resolução adotado no treinamento da YOLO (640 × 640 pixels) para 

garantir uniformidade no processamento e na aquisição das imagens. O conjunto de dados foi 

dividido em 80% para treinamento e 20% para validação, permitindo uma avaliação equilibrada do 

desempenho do modelo. Durante o processo de treinamento, foram utilizados 1.000 épocas e uma 

taxa de aprendizado (learning rate) de 0,0001; esses parâmetros foram definidos com o objetivo de 

otimizar a convergência e minimizar o erro de generalização. 

Além disso, para o treinamento, foi implementada uma função de custo customizada, desenvolvida 

com o objetivo de combinar a precisão na estimativa de profundidade com a coerência estatística 

das distribuições de profundidade preditas. Essa função de perda integra dois componentes 

principais: o Mean Squared Error (MEAN SQUARED ERROR, 2025), que mede o erro médio 

quadrático entre o mapa de profundidade real e o predito, e a divergência de Kullback–Leibler (KL 

DIVERGENCE, 2025), que compara as distribuições de probabilidade das profundidades entre o 

valor real e o estimado. 

Para o cálculo dessas distribuições, cada imagem é convertida em um histograma suavizado de 

profundidades, normalizado por meio de uma técnica de “soft histogram” com kernel gaussiano. 

Dessa forma, o modelo não apenas aprende a prever os valores absolutos de profundidade, mas 

também a preservar a distribuição relativa das distâncias em cada cena, o que contribui para uma 

representação mais consistente e estável do espaço tridimensional. A função de custo final é 

expressa como uma combinação ponderada dessas duas métricas, definida por:  

 

Equação 1 – Função de custo. 

 

 
 

onde  e  são hiperparâmetros que controlam a contribuição de cada termo. Essa formulação 

permite equilibrar o aprendizado entre precisão numérica e coerência estrutural, resultando em um 

modelo aluno mais robusto e adaptado às restrições de hardware embarcado. 

 

Etapa 4 – Integração das redes neurais. 

 

Após a etapa de destilação de modelos, foi utilizada a máscara de segmentação da rua gerada pelo 

modelo YOLO para a extração dos contornos da via. Inicialmente, os pontos pertencentes à borda 

da segmentação foram filtrados, de modo que apenas os pixels de limite da região segmentada 

fossem mantidos. Entretanto, observou-se que, para um mesmo valor de coordenada X, havia 

múltiplos valores de Y, o que representava diferentes pontos verticais sobre uma mesma coluna da 

imagem. Para contornar esse problema, aplicou-se uma filtragem adicional, selecionando apenas o 

ponto correspondente ao maior valor de Y para cada X, garantindo assim que apenas o contorno 

inferior da segmentação fosse preservado, representando de forma consistente o limite visível da 

rua. 

Em seguida, a mesma imagem foi processada pelo modelo aluno, desenvolvido a partir da 

destilação de modelos, para gerar o mapa de profundidade correspondente. A partir desse mapa, foi 

possível associar a cada ponto filtrado da saída da YOLO sua respectiva distância em relação ao 

veículo, obtendo assim uma estimativa da distância dos obstáculos pixel a pixel presentes à frente 

do veículo autônomo. 

 



 

 

Etapa 5 – Implementação no hardware embarcado. 

 

Após o desenvolvimento do algoritmo de determinação do espaço livre à frente do veículo, tornou-

se necessário selecionar um hardware capaz de executar o sistema de forma eficiente. Após uma 

análise das opções disponíveis no mercado, optou-se pela NVIDIA JETSON AGX ORIN (32 GB), 

devido ao seu elevado poder computacional aliado a dimensões físicas compactas e baixo consumo 

energético (cerca de 40 W em operação sem limitação de potência). Essas características tornam a 

plataforma especialmente adequada para aplicações embarcadas em veículos autônomos, nas quais 

há restrições de espaço e eficiência energética é um fator crítico. 

 

Figura 3 – Especificações NVIDIA JETSON AGX ORIN. 

 

 
 

Na figura 3, é possivel obrservar que  a NIVIDA JETSON AGX ORIN conta com uma capacidade 

computacional de até 200 TOPS (Tera Operations Per Second), ou seja, é capaz de realizar até 200 

trilhões de operações por segundo. Esse desempenho é especialmente importante em aplicações que 

envolvem redes neurais convolucionais (CNNs), pois tais modelos demandam uma grande 

quantidade de operações matriciais e convoluções em tempo real. 

Após a definição do hardware, foi necessário realizar a conversão do modelo aluno para formatos 

mais adequados ao ambiente embarcado, garantindo o máximo desempenho possível. Inicialmente, 

o modelo foi convertido do formato TensorFlow para o formato ONNX (Open Neural Network 

Exchange), um padrão aberto que facilita a interoperabilidade entre diferentes frameworks de redes 

neurais. Essa conversão permite maior flexibilidade e compatibilidade com outras ferramentas de 

otimização. 

Em seguida, o modelo ONNX foi convertido para o formato TensorRT, que é uma biblioteca de 

otimização desenvolvida pela NVIDIA para inferência de redes neurais em GPUs. O TensorRT 

realiza otimizações como fusão de camadas, quantização de pesos e execução em precisão mista 

(FP16/INT8), resultando em uma redução significativa no tempo de inferência e melhor 

aproveitamento da GPU da Jetson Orin. Dessa forma, o sistema pôde operar de forma mais eficiente 

e com desempenho em tempo real, fundamental para aplicações embarcadas em veículos 

autônomos. 



Com a otimização e implantação no hardware embarcado, o sistema proposto atingiu o desempenho 

necessário para operação em tempo real, consolidando a viabilidade da solução desenvolvida para 

aplicação em veículos autônomos. 

 

Resultados e Discussão 

 

Após o treinamento do modelo YOLO e do modelo aluno, bem como a execução do algoritmo de 

união entre ambos e a realização dos testes experimentais correspondentes, foram obtidos os 

resultados apresentados a seguir, os quais permitem avaliar o desempenho e a eficiência do sistema. 

 

Figura 4 – Segmentação da Rua. 

 

 
 

Na Figura 4, é possível observar o resultado do treinamento do modelo YOLO para à segmentação 

de rua. Em média, o modelo apresentou uma exatidão de 95%, com um tempo médio de execução 

de 0,05 segundos por imagem no modo FP16, o que demonstra sua viabilidade para aplicações em 

tempo real. 

Já na Figura 5, são apresentados os resultados comparativos entre o modelo aluno (ResU-Net) e o 

modelo professor (Depth-Pro). As imagens da primeira linha correspondem aos exemplos originais, 

as da segunda linha representam os mapas de profundidade gerados pelo modelo professor e, por 

fim, as da terceira linha mostram os resultados produzidos pelo modelo aluno. 

Após o processo de destilação, o modelo aluno desenvolvido passou a conter aproximadamente 35 

milhões de parâmetros, em contraste com os cerca de 500 milhões de parâmetros do modelo 

original (Depth-Pro). Essa redução de aproximadamente 93% na quantidade total de parâmetros 

resultou em uma diminuição significativa do custo computacional, permitindo sua execução em 

hardware embarcado com maior eficiência, além de reduzir o tempo de inferência de 

aproximadamente 180 segundos para cerca de 100 ms. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figura 5 - Comparação de saídas do modelo aluno e Depth-Pro. 

 

 
 

Na Figura 6, é possível comparar as distâncias estimadas pelos modelos aluno e professor (Depth-

Pro). As distâncias foram obtidas ao longo de algumas linhas horizontais da imagem, permitindo 

uma análise detalhada da correspondência entre as previsões. Observa-se que os valores produzidos 

pelo modelo aluno estão bastante próximos aos obtidos pelo modelo Depth-Pro, evidenciando uma 

boa transferência de conhecimento durante o processo de destilação. A principal diferença 

identificada é a presença de um ruído ligeiramente maior nas previsões do modelo aluno, o que é 

esperado em função de sua menor complexidade e número de parâmetros. 

 

Figura 6 – Comparação das distancias entre modelo aluno e Deph-Pro. 

 

 
 

Na Figura 7, é possível observar as etapas realizadas para a estimativa das distâncias. Inicialmente, 

são identificadas as bordas da segmentação da rua. Em seguida, realiza-se um processo de 

filtragem, mantendo apenas os pontos com coordenadas X associadas aos maiores valores de Y, 

correspondentes à borda inferior da região segmentada. Por fim, esses pontos são fornecidos ao 



modelo aluno, que retorna os valores estimados de distância para cada um deles. Dessa forma, é 

possível determinar a variação das distâncias dos objetos ao longo da imagem. 

 

 

Figura 7 – Algoritmo de determinação das distancias. 

 

 
 

Figura 8 – Protótipo de algoritmo de planejamento de trajetória. 

 

 
 

Na Figura 8, é apresentado um protótipo de algoritmo de trajetória desenvolvido para estimar o 

ângulo de direção do volante de um veículo autônomo, com base na segmentação da rua e nas 

distâncias estimadas pelo modelo aluno. 

O algoritmo inicia traçando uma reta que parte do centro da imagem representando o centro do 

veículo até o ponto de maior distância calculada pelo modelo aluno. Antes disso, os pontos de saída 

do modelo são filtrados para remoção de outliers, garantindo maior estabilidade nas estimativas. 

Em seguida, os pontos dessa reta são comparados com os pontos das distâncias do lado esquerdo e 

direito. Caso a distância entre eles seja menor que o limite definido pelo algoritmo, os pontos são 

ajustados lateralmente para o lado que apresentar maior distância. Se ambos os lados estiverem 

abaixo do limite, o ponto é reposicionado na média das duas distâncias. 

Após o ajuste, é aplicada uma curva spline para suavizar o caminho gerado, resultando em uma 

trajetória contínua e realista. Dessa forma, o algoritmo é capaz de prever a trajetória do veículo por 



aproximadamente 20 metros à frente, fornecendo uma base robusta para o controle direcional 

autônomo. 

 

Conclusões 

 

Esse trabalho de iniciação científica apresentou o desenvolvimento de um sistema embarcado para a 

determinação do espaço livre à frente de um veículo autônomo, utilizando técnicas de visão 

computacional e inteligência artificial como alternativa de menor custo em relação a sensores 

tradicionais, como o LiDAR. Por meio da combinação de um modelo de segmentação baseado no 

YOLO e de um modelo de estimativa de profundidade derivado da destilação do Depth-Pro, foi 

possível integrar a percepção do ambiente em um sistema unificado capaz de operar em tempo real. 

Os resultados obtidos demonstram a eficiência do processo de destilação de modelos na 

transferência de conhecimento entre arquiteturas de diferentes complexidades. O modelo aluno, 

com aproximadamente 35 milhões de parâmetros, apresentou um desempenho computacional 

significativamente superior, reduzindo o tempo médio de inferência de 170 segundos por imagem 

(modelo Depth-Pro) para 100 milissegundos por imagem (modelo aluno em INT8), sem perdas 

expressivas de precisão. Essa otimização possibilitou a execução do modelo em hardware 

embarcado, como a NVIDIA Jetson AGX Orin, de forma estável e com consumo energético 

reduzido. 

Além disso, o algoritmo de trajetória desenvolvido representa um protótipo inicial voltado à 

previsão do caminho do veículo com base na segmentação da via e nas distâncias estimadas pelo 

modelo aluno. Embora os resultados obtidos tenham sido satisfatórios, demonstrando a capacidade 

de prever trajetórias de até 20 metros à frente, o algoritmo ainda apresenta grande potencial de 

evolução. Melhorias futuras podem incluir o refinamento dos critérios de decisão lateral, a 

integração de múltiplos sensores e a aplicação de técnicas mais avançadas de planejamento e 

controle de trajetória. 

Dessa forma, o sistema proposto se mostra uma solução promissora para aplicações em veículos 

autônomos, conciliando baixo custo, eficiência computacional e precisão adequada, abrindo 

caminho para o desenvolvimento de sistemas de navegação autônoma mais acessíveis e escaláveis. 
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